Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
The same repeated number may be chosen from C unlimited number of times.
Note:
- All numbers (including target) will be positive integers.
- Elements in a combination (a1, a2, … , ak) must be in non-descending order. (ie, a1 ≤ a2 ≤ … ≤ ak).
- The solution set must not contain duplicate combinations.
For example, given candidate set
A solution set is:
递归求解,每次加进去一个数字,然后在以该数字开始的数组上递归求解,注意去除重复的元素就可以。这道题和之前写的Combination Sum II 应该是一样的写法,不过我之前那到题写的有些复杂,写成Subset那道题的递归写法了。
2,3,6,7 and target 7,A solution set is:
[7][2, 2, 3] public List<List<Integer>> combinationSum(int[] candidates, int target) {
List<List<Integer>> result = new ArrayList<List<Integer>>();
List<Integer> list = new ArrayList<Integer>();
Arrays.sort(candidates);
dfs(candidates, target, 0, list, result);
return result;
}
private void dfs(int[] num, int current, int beg, List<Integer> list, List<List<Integer>> result) {
if(current < 0) return ;
else if(current == 0) {
result.add(new ArrayList<Integer>(list));
}
else {
for(int i = beg; i < num.length; i++) {
if(i > beg && num[i] == num[i-1]) continue;
list.add(num[i]);
dfs(num, current-num[i], i, list, result);
list.remove(list.size() - 1);
}
}
}
没有评论:
发表评论