Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
The same repeated number may be chosen from C unlimited number of times.
Note:
- All numbers (including target) will be positive integers.
- Elements in a combination (a1, a2, … , ak) must be in non-descending order. (ie, a1 ≤ a2 ≤ … ≤ ak).
- The solution set must not contain duplicate combinations.
For example, given candidate set
A solution set is:
递归求解,每次加进去一个数字,然后在以该数字开始的数组上递归求解,注意去除重复的元素就可以。这道题和之前写的Combination Sum II 应该是一样的写法,不过我之前那到题写的有些复杂,写成Subset那道题的递归写法了。
2,3,6,7
and target 7
,A solution set is:
[7]
[2, 2, 3]
public List<List<Integer>> combinationSum(int[] candidates, int target) { List<List<Integer>> result = new ArrayList<List<Integer>>(); List<Integer> list = new ArrayList<Integer>(); Arrays.sort(candidates); dfs(candidates, target, 0, list, result); return result; } private void dfs(int[] num, int current, int beg, List<Integer> list, List<List<Integer>> result) { if(current < 0) return ; else if(current == 0) { result.add(new ArrayList<Integer>(list)); } else { for(int i = beg; i < num.length; i++) { if(i > beg && num[i] == num[i-1]) continue; list.add(num[i]); dfs(num, current-num[i], i, list, result); list.remove(list.size() - 1); } } }
没有评论:
发表评论