Suppose a sorted array is rotated at some pivot unknown to you beforehand.
(i.e.,
0 1 2 4 5 6 7 might become 4 5 6 7 0 1 2).
You are given a target value to search. If found in the array return its index, otherwise return -1.
You may assume no duplicate exists in the array.
二分搜索的变种题,之前写一直没有搞清楚关系,今天重新写了一次终于算是鼓捣明白了整体的流程。整体过程比较清晰,首先我们判断中值,如果正好相等的话,那么直接返回就好了,而如果不相等的话,我们需要判断目前确定的单调区间以及target是否落在单调区间中来进行二分:- 如果A[mid] >= A[l],这说明从A[l]到A[mid]之间是单调递增的,如果target在这个范围内,那么我们直接搜索这个区间,如果target < A[l] 或者 target > A[mid],那么说明target不在范围内,所以我们搜索另一个区间
- 如果A[mid] < A[r],说明从A[mid]到A[r]之间是单调递增的,同理按照上面的思路来进行搜索
public int search(int[] A, int target) {
int l = 0, r = A.length - 1;
while(l <= r) {
int mid = l + (r - l) / 2;
if(A[mid] == target) return mid;
else if(A[mid] >= A[l]) { // find the monotone interval
if(A[mid] > target && target >= A[l]) // located in the monotone interval
r = mid - 1;
else
l = mid + 1;
}
else {
if(A[mid] < target && target <= A[r]) {
l = mid + 1;
}
else
r = mid - 1;
}
}
return -1;
}
没有评论:
发表评论