Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.
Below is one possible representation of s1 =
"great"
:great / \ gr eat / \ / \ g r e at / \ a t
To scramble the string, we may choose any non-leaf node and swap its two children.
For example, if we choose the node
"gr"
and swap its two children, it produces a scrambled string "rgeat"
.rgeat / \ rg eat / \ / \ r g e at / \ a t
We say that
"rgeat"
is a scrambled string of "great"
.
Similarly, if we continue to swap the children of nodes
"eat"
and "at"
, it produces a scrambled string "rgtae"
.rgtae / \ rg tae / \ / \ r g ta e / \ t a
We say that
"rgtae"
is a scrambled string of "great"
.
Given two strings s1 and s2 of the same length, determine if s2 is a scrambled string of s1.
DFS题目,对于两个字符串,如果它们都是空的,则返回true,这个可以算作是一个corner case,之后如果它们都是只有一个字符的,那么直接比较返回。对于长度大于1的字符串,如s1和s2,可以做如下的比较:- s1分割成s11和s12,s2在同样位置分割s21,s22,然后分别递归s11,s21与s12,s22
- s1分割成s11和s12,s2从尾部往前分割成对应大小的s21,s22,然后分别递归s11,s22和s12,s21
public boolean isScramble(String s1, String s2) { if(s1 == null && s2 == null) return true; // corner case if(s1.length() != s2.length()) return false; if(s1.length() == 1 && s1.equals(s2)) return true; // base case, only one element /*char[] ch1 = s1.toCharArray(); char[] ch2 = s2.toCharArray(); Arrays.sort(ch1); Arrays.sort(ch2); for(int i = 0; i < ch1.length; i++) { if(ch1[i] != ch2[i]) return false; }*/ int[] num1 = new int[26]; int[] num2 = new int[26]; for(int i = 0; i < s1.length(); i++) { num1[s1.charAt(i) - 'a']++; num2[s2.charAt(i) - 'a']++; } for(int i = 0;i < 26; i++) { if(num1[i] != num2[i]) return false; } for(int i = 1; i <= s1.length() - 1; i++) { if((isScramble(s1.substring(0, i), s2.substring(0, i)) && isScramble(s1.substring(i), s2.substring(i))) || (isScramble(s1.substring(0, i), s2.substring(s2.length() - i)) && isScramble(s1.substring(i), s2.substring(0, s2.length() - i)))) return true; } return false; }
今天看了能用DP来求解,就用DP又写了一次,需要一个三维DP来存储足够的信息,dp[len][i][j]表示以s1以i开始和s2以j开始长度为len的子串是否是scramble string,状态转移方程为:
dp[len][i][j] = true if exist k so that dp[k][i][j] = true && dp[len][i+k][j+k] = true or
dp[k][i][j+len-k] = true && dp[len-k][i+k][j] = true
最终的代码虽然是套了4层循环,但是平摊分析之后复杂度应该还是O(n^3)级别的。
public boolean isScramble(String s1, String s2) { int n = s1.length(); boolean[][][] dp = new boolean[n+1][n][n]; for(int len = 1; len <= n; len++) { for(int i = 0; i <= n-len; i++) { for(int j = 0; j <= n-len; j++) { if(len == 1) { if(s1.charAt(i) == s2.charAt(j)) dp[len][i][j] = true; else dp[len][i][j] = false; } else { dp[len][i][j] = false; for(int k = 1; k < len; k++) { if((dp[k][i][j] == true && dp[len-k][i+k][j+k] == true) || (dp[k][i][j+len-k] == true && dp[len-k][i+k][j] == true)) { dp[len][i][j] = true; break; } } } } } } return dp[n][0][0]; }
没有评论:
发表评论